Files
esphome-emporia-vue-utility/legacy/emporia_vue_utility.h
2024-06-08 22:54:26 -07:00

821 lines
32 KiB
C++

#include "esphome.h"
#include "sensor.h"
// Extra meter reading response debugging
#define DEBUG_VUE_RESPONSE true
// If the instant watts being consumed meter reading is outside of these ranges,
// the sample will be ignored which helps prevent garbage data from polluting
// home assistant graphs. Note this is the instant watts value, not the
// watt-hours value, which has smarter filtering. The defaults of 131kW
// should be fine for most people. (131072 = 0x20000)
#define WATTS_MIN -131072
#define WATTS_MAX 131072
// How much the watt-hours consumed value can change between samples.
// Values that change by more than this over the avg value across the
// previous 5 samples will be discarded.
#define MAX_WH_CHANGE 2000
// How many samples to average the watt-hours value over.
#define MAX_WH_CHANGE_ARY 5
// How often to request a reading from the meter in seconds.
// Meters typically update the reported value only once every
// 10 to 30 seconds, so "5" is usually fine.
// You might try setting this to "1" to see if your meter has
// new values more often
#define METER_READING_INTERVAL 30
// How often to attempt to re-join the meter when it hasn't
// been returning readings
#define METER_REJOIN_INTERVAL 30
// On first startup, how long before trying to start to talk to meter
#define INITIAL_STARTUP_DELAY 10
// Should this code manage the "wifi" and "link" LEDs?
// set to false if you want manually manage them elsewhere
#define USE_LED_PINS true
#define LED_PIN_LINK 32
#define LED_PIN_WIFI 33
class EmporiaVueUtility : public Component, public UARTDevice {
public:
EmporiaVueUtility(
UARTComponent *parent,
uint8_t interval_seconds = METER_READING_INTERVAL):
UARTDevice(parent), meter_reading_interval(interval_seconds) {}
Sensor *kWh_net = new Sensor();
Sensor *kWh_consumed = new Sensor();
Sensor *kWh_returned = new Sensor();
Sensor *Wh_net = new Sensor();
Sensor *Wh_consumed = new Sensor();
Sensor *Wh_returned = new Sensor();
Sensor *W = new Sensor();
Sensor *W_consumed = new Sensor();
Sensor *W_returned = new Sensor();
const char *TAG = "Vue";
const uint8_t meter_reading_interval;
/**
* Format known from MGM Firmware version 2.
*/
struct MeterReadingV2 {
char header;
char is_resp;
char msg_type;
uint8_t data_len;
byte unknown0[4]; // Payload Bytes 0 to 3
uint32_t watt_hours; // Payload Bytes 4 to 7
byte unknown8[39]; // Payload Bytes 8 to 46
uint8_t meter_div; // Payload Byte 47
byte unknown48[2]; // Payload Bytes 48 to 49
uint16_t cost_unit; // Payload Bytes 50 to 51
byte maybe_flags[2]; // Payload Bytes 52 to 53
byte unknown54[2]; // Payload Bytes 54 to 55
uint32_t watts; // Payload Bytes 56 to 59
byte unknown3[88]; // Payload Bytes 60 to 147
uint32_t timestamp; // Payload Bytes 148 to 152
};
/**
* Format known from MGM Firmware version 7 and 8.
*/
struct MeterReadingV7 {
byte header;
byte is_resp;
byte msg_type;
uint8_t data_len;
byte unknown0; // Payload Byte 0 : Always 0x18
byte increment; // Payload Byte 1 : Increments on each reading and rolls over
byte unknown2[5]; // Payload Bytes 2 to 6
uint32_t import_wh; // Payload Bytes 7 to 10
byte unknown11[6]; // Payload Bytes 11 to 16
uint32_t export_wh; // Payload Bytes 17 to 20
byte unknown21[19]; // Payload Bytes 21 to 39
uint32_t watts; // Payload Bytes 40 to 43 : Starts with 0x2A, only use the last 24 bits.
} __attribute__((packed));
// A Mac Address or install code response
struct Addr {
char header;
char is_resp;
char msg_type;
uint8_t data_len;
byte addr[8];
char newline;
};
// Firmware version response
struct Ver {
char header;
char is_resp;
char msg_type;
uint8_t data_len;
uint8_t value;
char newline;
};
union input_buffer {
byte data[260]; // V2 4 byte header + 255 bytes payload + 1 byte terminator
struct MeterReadingV2 mr2;
struct MeterReadingV7 mr7;
struct Addr addr;
struct Ver ver;
} input_buffer;
char mgm_mac_address[25] = "";
char mgm_install_code[25] = "";
int mgm_firmware_ver = 0;
uint16_t pos = 0;
uint16_t data_len;
time_t last_meter_reading = 0;
bool last_reading_has_error;
time_t now;
// The most recent meter divisor, meter reading payload V2 byte 47
uint8_t meter_div = 0;
// The most recent cost unit
uint16_t cost_unit = 0;
// Turn the wifi led on/off
void led_wifi(bool state) {
#if USE_LED_PINS
if (state) digitalWrite(LED_PIN_WIFI, 0);
else digitalWrite(LED_PIN_WIFI, 1);
#endif
return;
}
// Turn the link led on/off
void led_link(bool state) {
#if USE_LED_PINS
if (state) digitalWrite(LED_PIN_LINK, 0);
else digitalWrite(LED_PIN_LINK, 1);
#endif
return;
}
// Reads and logs everything from serial until it runs
// out of data or encounters a 0x0d byte (ascii CR)
void dump_serial_input(bool logit) {
while (available()) {
if (input_buffer.data[pos] == 0x0d) {
break;
}
input_buffer.data[pos] = read();
if (pos == sizeof(input_buffer.data)) {
if (logit) {
ESP_LOGE(TAG, "Filled buffer with garbage:");
ESP_LOG_BUFFER_HEXDUMP(TAG, input_buffer.data, pos, ESP_LOG_ERROR);
}
pos = 0;
} else {
pos++;
}
}
if (pos > 0 && logit) {
ESP_LOGE(TAG, "Skipped input:");
ESP_LOG_BUFFER_HEXDUMP(TAG, input_buffer.data, pos-1, ESP_LOG_ERROR);
}
pos = 0;
data_len = 0;
}
size_t read_msg() {
if (!available()) {
return 0;
}
while (available()) {
char c = read();
uint16_t prev_pos = pos;
input_buffer.data[pos] = c;
pos++;
switch (prev_pos) {
case 0:
if (c != 0x24 ) { // 0x24 == "$", the start of a message
ESP_LOGE(TAG, "Invalid input at position %d: 0x%x", pos, c);
dump_serial_input(true);
pos = 0;
return 0;
}
break;
case 1:
if (c != 0x01 ) { // 0x01 means "response"
ESP_LOGE(TAG, "Invalid input at position %d 0x%x", pos, c);
dump_serial_input(true);
pos = 0;
return 0;
}
break;
case 2:
// This is the message type byte
break;
case 3:
// The 3rd byte should be the data length
data_len = c;
break;
case sizeof(input_buffer.data) - 1:
ESP_LOGE(TAG, "Buffer overrun");
dump_serial_input(true);
return 0;
default:
if (pos < data_len + 5) {
;
} else if (c == 0x0d) { // 0x0d == "/r", which should end a message
return pos;
} else {
ESP_LOGE(TAG, "Invalid terminator at pos %d 0x%x", pos, c);
ESP_LOGE(TAG, "Following char is 0x%x", read());
dump_serial_input(true);
return 0;
}
}
} // while(available())
return 0;
}
int32_t endian_swap(uint32_t in) {
uint32_t x = 0;
x += (in & 0x000000FF) << 24;
x += (in & 0x0000FF00) << 8;
x += (in & 0x00FF0000) >> 8;
x += (in & 0xFF000000) >> 24;
return x;
}
void handle_resp_meter_reading() {
int32_t input_value;
float watt_hours;
float watts;
struct MeterReadingV2 *mr2;
mr2 = &input_buffer.mr2;
struct MeterReadingV7 *mr7;
mr7 = &input_buffer.mr7;
if (mgm_firmware_ver < 7) {
ESP_LOGD(TAG, "Parsing V2 Payload");
// Make sure the packet is as long as we expect
if (pos < sizeof(struct MeterReadingV2)) {
ESP_LOGE(TAG, "Short meter reading packet");
last_reading_has_error = 1;
return;
}
// Setup Meter Divisor
if ((mr2->meter_div > 10) || (mr2->meter_div < 1)) {
ESP_LOGW(TAG, "Unreasonable MeterDiv value %d, ignoring", mr2->meter_div);
last_reading_has_error = 1;
ask_for_bug_report();
} else if ((meter_div != 0) && (mr2->meter_div != meter_div)) {
ESP_LOGW(TAG, "MeterDiv value changed from %d to %d", meter_div, mr2->meter_div);
last_reading_has_error = 1;
meter_div = mr2->meter_div;
} else {
meter_div = mr2->meter_div;
}
// Setup Cost Unit
cost_unit = ((mr2->cost_unit & 0x00FF) << 8)
+ ((mr2->cost_unit & 0xFF00) >> 8);
watt_hours = parse_meter_watt_hours_v2(mr2);
watts = parse_meter_watts_v2(mr2);
// Extra debugging of non-zero bytes, only on first packet or if DEBUG_VUE_RESPONSE is true
if ((DEBUG_VUE_RESPONSE) || (last_meter_reading == 0)) {
ESP_LOGD(TAG, "Meter Divisor: %d", meter_div);
ESP_LOGD(TAG, "Meter Cost Unit: %d", cost_unit);
ESP_LOGD(TAG, "Meter Flags: %02x %02x", mr2->maybe_flags[0], mr2->maybe_flags[1]);
ESP_LOGD(TAG, "Meter Energy Flags: %02x", (byte)mr2->watt_hours);
ESP_LOGD(TAG, "Meter Power Flags: %02x", (byte)mr2->watts);
// Unlike the other values, ms_since_reset is in our native byte order
ESP_LOGD(TAG, "Meter Timestamp: %.f", float(mr2->timestamp) / 1000.0 );
ESP_LOGD(TAG, "Meter Energy: %.3fkWh", watt_hours / 1000.0 );
ESP_LOGD(TAG, "Meter Power: %3.0fW", watts);
for (int x = 1 ; x < pos / 4 ; x++) {
int y = x * 4;
if ( (input_buffer.data[y])
|| (input_buffer.data[y+1])
|| (input_buffer.data[y+2])
|| (input_buffer.data[y+3])) {
ESP_LOGD(TAG, "Meter Response Bytes %3d to %3d: %02x %02x %02x %02x", y-4, y-1,
input_buffer.data[y], input_buffer.data[y+1],
input_buffer.data[y+2], input_buffer.data[y+3]);
}
}
}
} else {
ESP_LOGD(TAG, "Parsing V7+ Payload");
// Quick validate, look for a magic number.
if (input_buffer.data[44] != 0x2A) {
ESP_LOGE(TAG, "Byte 44 was %02x instead of %02x", input_buffer.data[44], 0x2A);
last_reading_has_error = 1;
return;
}
watts = parse_meter_watts_v7(mr7->watts);
watt_hours = parse_meter_watt_hours_v7(mr7);
}
}
void ask_for_bug_report() {
ESP_LOGE(TAG, "If you continue to see this, try asking for help at");
ESP_LOGE(TAG, " https://community.home-assistant.io/t/emporia-vue-utility-connect/378347");
ESP_LOGE(TAG, "and include a few lines above this message and the data below until \"EOF\":");
ESP_LOGE(TAG, "Full packet:");
for (int x = 1 ; x < pos / 4 ; x++) {
int y = x * 4;
if ( (input_buffer.data[y])
|| (input_buffer.data[y+1])
|| (input_buffer.data[y+2])
|| (input_buffer.data[y+3])) {
ESP_LOGE(TAG, " Meter Response Bytes %3d to %3d: %02x %02x %02x %02x", y-4, y-1,
input_buffer.data[y], input_buffer.data[y+1],
input_buffer.data[y+2], input_buffer.data[y+3]);
}
}
ESP_LOGI(TAG, "MGM Firmware Version: %d", mgm_firmware_ver);
ESP_LOGE(TAG, "EOF");
}
float parse_meter_watt_hours_v2(struct MeterReadingV2 *mr) {
// Keep the last N watt-hour samples so invalid new samples can be discarded
static float history[MAX_WH_CHANGE_ARY];
static uint8_t history_pos;
static bool not_first_run;
// Counters for deriving consumed and returned separately
static uint32_t consumed;
static uint32_t returned;
float prev_wh;
float watt_hours;
int32_t watt_hours_raw;
float wh_diff;
float history_avg;
int8_t x;
watt_hours_raw = endian_swap(mr->watt_hours);
if (
(watt_hours_raw == 4194304) // "missing data" message (0x00 40 00 00)
|| (watt_hours_raw == 0)) {
ESP_LOGI(TAG, "Watt-hours value missing");
last_reading_has_error = 1;
return(0);
}
// Handle if a meter divisor is in effect
watt_hours = (float)watt_hours_raw * (float)meter_div;
if (!not_first_run) {
// Initialize watt-hour filter on first run
for (x = MAX_WH_CHANGE_ARY ; x != 0 ; x--) {
history[x-1] = watt_hours;
}
not_first_run = 1;
}
// Fetch the previous value from history
prev_wh = history[history_pos];
// Insert a new value into filter array
history_pos++;
if (history_pos == MAX_WH_CHANGE_ARY) {
history_pos = 0;
}
history[history_pos] = watt_hours;
history_avg = 0;
// Calculate avg watt_hours over previous N samples
for (x = MAX_WH_CHANGE_ARY ; x != 0 ; x--) {
history_avg += history[x-1] / MAX_WH_CHANGE_ARY;
}
// Get the difference of current value from avg
if (abs(history_avg - watt_hours) > MAX_WH_CHANGE) {
ESP_LOGE(TAG, "Unreasonable watt-hours of %f, +%f from moving avg",
watt_hours, watt_hours - history_avg);
last_reading_has_error = 1;
return(watt_hours);
}
// Get the difference from previously reported value
wh_diff = watt_hours - prev_wh;
if (wh_diff > 0) { // Energy consumed from grid
if (consumed > UINT32_MAX - wh_diff) {
consumed -= UINT32_MAX - wh_diff;
} else {
consumed += wh_diff;
}
}
if (wh_diff < 0) { // Energy sent to grid
if (returned > UINT32_MAX - wh_diff) {
returned -= UINT32_MAX - wh_diff;
} else {
returned -= wh_diff;
}
}
Wh_consumed->publish_state(float(consumed));
Wh_returned->publish_state(float(returned));
Wh_net->publish_state(watt_hours);
kWh_consumed->publish_state(float(consumed) / 1000.0);
kWh_returned->publish_state(float(returned) / 1000.0);
kWh_net->publish_state(watt_hours / 1000.0);
return(watt_hours);
}
float parse_meter_watt_hours_v7(struct MeterReadingV7 *mr) {
uint32_t consumed;
uint32_t returned;
static uint32_t prev_consumed;
static uint32_t prev_returned;
int32_t net = 0;
consumed = mr->import_wh;
returned = mr->export_wh;
int32_t consumed_diff = int32_t(consumed) - int32_t(prev_consumed);
int32_t returned_diff = int32_t(returned) - int32_t(prev_returned);
// Sometimes the reported value is far larger than it should be. Let's ignore it.
if (std::abs(consumed_diff) > MAX_WH_CHANGE || std::abs(returned_diff) > MAX_WH_CHANGE) {
ESP_LOGW(TAG, "Reported watt-hour change is too large vs previous reading. Skipping.");
// The `prev_consumed` and `prev_returned` will still be given the current reading
// even if the value is erroneous.
//
// This approach should handle two scenarios:
// 1) Some sort of outage causes a long gap between the previous reading (or is 0 after
// a reboot) and the current reading. In this case, the difference from the previous
// reading can be "too" large, but actually be expected.
// 2) I have seen erroneous blips of a single sample with a value that is way too big.
//
// The code handles scenario #1 by ignoring the current reading but then continuing on
// as normal after.
// The code handles scenario #2 by ignoring the current reading, then ignoring the
// followup reading, then continuing on as normal.
//
// At worst, two consecutive samples will be ignored.
prev_consumed = consumed;
prev_returned = returned;
return(0);
}
Wh_consumed->publish_state(float(consumed));
Wh_returned->publish_state(float(returned));
kWh_consumed->publish_state(float(consumed) / 1000.0);
kWh_returned->publish_state(float(returned) / 1000.0);
net = consumed - returned;
Wh_net->publish_state(float(net));
kWh_net->publish_state(float(net) / 1000.0);
prev_consumed = consumed;
prev_returned = returned;
return(net);
}
/*
* Read the instant watts value.
*
* For MGM version 2 (to 6?)
*/
float parse_meter_watts_v2(struct MeterReadingV2 *mr) {
int32_t watts_raw;
float watts;
// Read the instant watts value
// (it's actually a 24-bit int)
watts_raw = (endian_swap(mr->watts) & 0xFFFFFF);
// Bit 1 of the left most byte indicates a negative value
if (watts_raw & 0x800000) {
if (watts_raw == 0x800000) {
// Exactly "negative zero", which means "missing data"
ESP_LOGI(TAG, "Instant Watts value missing");
return(0);
} else if (watts_raw & 0xC00000) {
// This is either more than 12MW being returned,
// or it's a negative number in 1's complement.
// Since the returned value is a 24-bit value
// and "watts" is a 32-bit signed int, we can
// get away with this.
watts_raw -= 0xFFFFFF;
} else {
// If we get here, then hopefully it's a negative
// number in signed magnitude format
watts_raw = (watts_raw ^ 0x800000) * -1;
}
}
// Handle if a meter divisor is in effect
watts = (float)watts_raw * (float)meter_div;
if ((watts >= WATTS_MAX) || (watts < WATTS_MIN)) {
ESP_LOGE(TAG, "Unreasonable watts value %f", watts);
last_reading_has_error = 1;
} else {
W->publish_state(watts);
if (watts > 0) {
W_consumed->publish_state(watts);
W_returned->publish_state(0);
} else {
W_consumed->publish_state(0);
W_returned->publish_state(-watts);
}
}
return(watts);
}
/*
* Read the instant watts value.
*
* For MGM version 7 and 8
*/
float parse_meter_watts_v7(int32_t watts) {
// Read the instant watts value
// (it's actually a 24-bit int)
watts >>= 8;
if ((watts >= WATTS_MAX) || (watts < WATTS_MIN)) {
ESP_LOGE(TAG, "Unreasonable watts value %d", watts);
last_reading_has_error = 1;
} else {
W->publish_state(watts);
if (watts > 0) {
W_consumed->publish_state(watts);
W_returned->publish_state(0);
} else {
W_consumed->publish_state(0);
W_returned->publish_state(-watts);
}
}
return(watts);
}
void handle_resp_meter_join() {
// ESP_LOGD(TAG, "Got meter join response");
// Reusing Ver struct because both have a single byte payload value.
struct Ver *ver;
ver = &input_buffer.ver;
ESP_LOGI(TAG, "Join response value: %d", ver->value);
}
int handle_resp_mac_address() {
// ESP_LOGD(TAG, "Got mac addr response");
struct Addr *mac;
mac = &input_buffer.addr;
snprintf(mgm_mac_address, sizeof(mgm_mac_address), "%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",
mac->addr[7],
mac->addr[6],
mac->addr[5],
mac->addr[4],
mac->addr[3],
mac->addr[2],
mac->addr[1],
mac->addr[0]);
ESP_LOGI(TAG, "MGM Mac Address: %s", mgm_mac_address);
return(0);
}
int handle_resp_install_code() {
// ESP_LOGD(TAG, "Got install code response");
struct Addr *code;
code = &input_buffer.addr;
snprintf(mgm_install_code, sizeof(mgm_install_code), "%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",
code->addr[0],
code->addr[1],
code->addr[2],
code->addr[3],
code->addr[4],
code->addr[5],
code->addr[6],
code->addr[7]);
ESP_LOGI(TAG, "MGM Install Code: %s (secret)", mgm_install_code);
return(0);
}
int handle_resp_firmware_ver() {
struct Ver *ver;
ver = &input_buffer.ver;
mgm_firmware_ver = ver->value;
ESP_LOGI(TAG, "MGM Firmware Version: %d", mgm_firmware_ver);
return(0);
}
void send_meter_request() {
const byte msg[] = { 0x24, 0x72, 0x0d };
ESP_LOGD(TAG, "Sending request for meter reading");
write_array(msg, sizeof(msg));
led_link(false);
}
void send_meter_join() {
const byte msg[] = { 0x24, 0x6a, 0x0d };
ESP_LOGI(TAG, "MGM Firmware Version: %d", mgm_firmware_ver);
ESP_LOGI(TAG, "MGM Mac Address: %s", mgm_mac_address);
ESP_LOGI(TAG, "MGM Install Code: %s (secret)", mgm_install_code);
ESP_LOGI(TAG, "Trying to re-join the meter. If you continue to see this message");
ESP_LOGI(TAG, "you may need to move the device closer to your power meter or");
ESP_LOGI(TAG, "contact your utililty and ask them to reprovision the device.");
ESP_LOGI(TAG, "Also confirm that the above mac address & install code match");
ESP_LOGI(TAG, "what is printed on your device.");
ESP_LOGE(TAG, "You can also try asking for help at");
ESP_LOGE(TAG,
" "
"https://community.home-assistant.io/t/"
"emporia-vue-utility-connect/378347");
write_array(msg, sizeof(msg));
led_wifi(false);
}
void send_mac_req() {
const byte msg[] = { 0x24, 0x6d, 0x0d };
ESP_LOGD(TAG, "Sending mac addr request");
write_array(msg, sizeof(msg));
led_wifi(false);
}
void send_install_code_req() {
const byte msg[] = { 0x24, 0x69, 0x0d };
ESP_LOGD(TAG, "Sending install code request");
write_array(msg, sizeof(msg));
led_wifi(false);
}
void send_version_req() {
const byte msg[] = { 0x24, 0x66, 0x0d };
ESP_LOGD(TAG, "Sending firmware version request");
write_array(msg, sizeof(msg));
led_wifi(false);
}
void clear_serial_input() {
write(0x0d);
flush();
delay(100);
while (available()) {
while (available()) read();
delay(100);
}
}
void setup() override {
#if USE_LED_PINS
pinMode(LED_PIN_LINK, OUTPUT);
pinMode(LED_PIN_WIFI, OUTPUT);
#endif
led_link(false);
led_wifi(false);
clear_serial_input();
}
void loop() override {
static time_t next_meter_request;
static time_t next_meter_join;
static uint8_t startup_step;
char msg_type = 0;
size_t msg_len = 0;
byte inb;
msg_len = read_msg();
now = ::time(&now);
/* sanity checks! */
if (next_meter_request >
now + (INITIAL_STARTUP_DELAY + METER_REJOIN_INTERVAL)) {
ESP_LOGD(TAG,
"Time jumped back (%lld > %lld + %lld); resetting",
(long long) next_meter_request,
(long long) now,
(long long) (INITIAL_STARTUP_DELAY +
METER_REJOIN_INTERVAL));
next_meter_request = next_meter_join = 0;
}
if (msg_len != 0) {
msg_type = input_buffer.data[2];
switch (msg_type) {
case 'r': // Meter reading
led_link(true);
if (now < last_meter_reading + int(meter_reading_interval / 4)) {
// Sometimes a duplicate message is sent in quick succession.
// Ignoring the duplicate.
ESP_LOGD(TAG, "Got extra message %ds after the previous message.", now - last_meter_reading);
break;
}
last_reading_has_error = 0;
handle_resp_meter_reading();
if (last_reading_has_error) {
ask_for_bug_report();
} else {
last_meter_reading = now;
next_meter_join = now + METER_REJOIN_INTERVAL;
}
break;
case 'j': // Meter join
handle_resp_meter_join();
led_wifi(true);
if (startup_step == 3) {
send_meter_request();
startup_step++;
}
break;
case 'f':
if (!handle_resp_firmware_ver()) {
led_wifi(true);
if (startup_step == 0) {
startup_step++;
send_mac_req();
next_meter_request = now + meter_reading_interval;
}
}
break;
case 'm': // Mac address
if (!handle_resp_mac_address()) {
led_wifi(true);
if (startup_step == 1) {
startup_step++;
send_install_code_req();
next_meter_request = now + meter_reading_interval;
}
}
break;
case 'i':
if (!handle_resp_install_code()) {
led_wifi(true);
if (startup_step == 2) {
startup_step++;
send_meter_request();
next_meter_request = now + meter_reading_interval;
}
}
break;
case 'e':
// Unknown response type, but we can ignore.
ESP_LOGI(TAG, "Got 'e'-type message with value: %d", input_buffer.data[4]);
break;
default:
ESP_LOGE(TAG, "Unhandled response type '%c'", msg_type);
ESP_LOG_BUFFER_HEXDUMP(TAG, input_buffer.data, msg_len, ESP_LOG_ERROR);
break;
}
pos = 0;
}
if (mgm_firmware_ver < 1) {
// Something's wrong, do the startup sequence again.
startup_step = 0;
send_version_req();
}
if (now >= next_meter_request) {
// Handle initial startup delay
if (next_meter_request == 0) {
next_meter_request = now + INITIAL_STARTUP_DELAY;
next_meter_join = next_meter_request + METER_REJOIN_INTERVAL;
return;
}
// Schedule the next MGM message
next_meter_request = now + meter_reading_interval;
if (now > next_meter_join) {
startup_step = 9; // Cancel startup messages
send_meter_join();
next_meter_join = now + METER_REJOIN_INTERVAL;
return;
}
if (startup_step == 0) send_version_req();
else if (startup_step == 1) send_mac_req();
else if (startup_step == 2) send_install_code_req();
else if (startup_step == 3) send_meter_join();
else send_meter_request();
}
}
};