[scheduler] Make core timer ID collisions impossible with type-safe internal IDs

Previously, PollingComponent used the string "update" and DelayAction
used "delay" as scheduler names. If a component subclassing
PollingComponent or using DelayAction also happened to use these same
strings for its own timers, the core timer would be silently cancelled
— a subtle bug that would be extremely hard to track down.

This introduces InternalSchedulerID, a type-safe wrapper that routes
through a new NUMERIC_ID_INTERNAL NameType. Since the scheduler
matches by (component, name_type, id, type), internal IDs can never
collide with component-level NUMERIC_ID or string-based names, even
if the underlying uint32_t values overlap.

Also migrates binary_sensor filters, MultiClickTrigger, and sensor
filters from string-based to uint32_t scheduler IDs. Each filter is
its own Component instance so IDs are scoped per-instance with no
collision risk.
This commit is contained in:
J. Nick Koston
2026-02-09 05:50:41 -06:00
parent fb93283720
commit ed3acd582e
8 changed files with 132 additions and 40 deletions

View File

@@ -5,6 +5,14 @@ namespace esphome::binary_sensor {
static const char *const TAG = "binary_sensor.automation";
// MultiClickTrigger timeout IDs.
// MultiClickTrigger is its own Component instance, so the scheduler scopes
// IDs by component pointer — no risk of collisions between instances.
constexpr uint32_t MULTICLICK_TRIGGER_ID = 0;
constexpr uint32_t MULTICLICK_COOLDOWN_ID = 1;
constexpr uint32_t MULTICLICK_IS_VALID_ID = 2;
constexpr uint32_t MULTICLICK_IS_NOT_VALID_ID = 3;
void MultiClickTrigger::on_state_(bool state) {
// Handle duplicate events
if (state == this->last_state_) {
@@ -27,7 +35,7 @@ void MultiClickTrigger::on_state_(bool state) {
evt.min_length, evt.max_length);
this->at_index_ = 1;
if (this->timing_.size() == 1 && evt.max_length == 4294967294UL) {
this->set_timeout("trigger", evt.min_length, [this]() { this->trigger_(); });
this->set_timeout(MULTICLICK_TRIGGER_ID, evt.min_length, [this]() { this->trigger_(); });
} else {
this->schedule_is_valid_(evt.min_length);
this->schedule_is_not_valid_(evt.max_length);
@@ -57,13 +65,13 @@ void MultiClickTrigger::on_state_(bool state) {
this->schedule_is_not_valid_(evt.max_length);
} else if (*this->at_index_ + 1 != this->timing_.size()) {
ESP_LOGV(TAG, "B i=%zu min=%" PRIu32, *this->at_index_, evt.min_length); // NOLINT
this->cancel_timeout("is_not_valid");
this->cancel_timeout(MULTICLICK_IS_NOT_VALID_ID);
this->schedule_is_valid_(evt.min_length);
} else {
ESP_LOGV(TAG, "C i=%zu min=%" PRIu32, *this->at_index_, evt.min_length); // NOLINT
this->is_valid_ = false;
this->cancel_timeout("is_not_valid");
this->set_timeout("trigger", evt.min_length, [this]() { this->trigger_(); });
this->cancel_timeout(MULTICLICK_IS_NOT_VALID_ID);
this->set_timeout(MULTICLICK_TRIGGER_ID, evt.min_length, [this]() { this->trigger_(); });
}
*this->at_index_ = *this->at_index_ + 1;
@@ -71,14 +79,14 @@ void MultiClickTrigger::on_state_(bool state) {
void MultiClickTrigger::schedule_cooldown_() {
ESP_LOGV(TAG, "Multi Click: Invalid length of press, starting cooldown of %" PRIu32 " ms", this->invalid_cooldown_);
this->is_in_cooldown_ = true;
this->set_timeout("cooldown", this->invalid_cooldown_, [this]() {
this->set_timeout(MULTICLICK_COOLDOWN_ID, this->invalid_cooldown_, [this]() {
ESP_LOGV(TAG, "Multi Click: Cooldown ended, matching is now enabled again.");
this->is_in_cooldown_ = false;
});
this->at_index_.reset();
this->cancel_timeout("trigger");
this->cancel_timeout("is_valid");
this->cancel_timeout("is_not_valid");
this->cancel_timeout(MULTICLICK_TRIGGER_ID);
this->cancel_timeout(MULTICLICK_IS_VALID_ID);
this->cancel_timeout(MULTICLICK_IS_NOT_VALID_ID);
}
void MultiClickTrigger::schedule_is_valid_(uint32_t min_length) {
if (min_length == 0) {
@@ -86,13 +94,13 @@ void MultiClickTrigger::schedule_is_valid_(uint32_t min_length) {
return;
}
this->is_valid_ = false;
this->set_timeout("is_valid", min_length, [this]() {
this->set_timeout(MULTICLICK_IS_VALID_ID, min_length, [this]() {
ESP_LOGV(TAG, "Multi Click: You can now %s the button.", this->parent_->state ? "RELEASE" : "PRESS");
this->is_valid_ = true;
});
}
void MultiClickTrigger::schedule_is_not_valid_(uint32_t max_length) {
this->set_timeout("is_not_valid", max_length, [this]() {
this->set_timeout(MULTICLICK_IS_NOT_VALID_ID, max_length, [this]() {
ESP_LOGV(TAG, "Multi Click: You waited too long to %s.", this->parent_->state ? "RELEASE" : "PRESS");
this->is_valid_ = false;
this->schedule_cooldown_();
@@ -106,9 +114,9 @@ void MultiClickTrigger::cancel() {
void MultiClickTrigger::trigger_() {
ESP_LOGV(TAG, "Multi Click: Hooray, multi click is valid. Triggering!");
this->at_index_.reset();
this->cancel_timeout("trigger");
this->cancel_timeout("is_valid");
this->cancel_timeout("is_not_valid");
this->cancel_timeout(MULTICLICK_TRIGGER_ID);
this->cancel_timeout(MULTICLICK_IS_VALID_ID);
this->cancel_timeout(MULTICLICK_IS_NOT_VALID_ID);
this->trigger();
}

View File

@@ -6,6 +6,14 @@ namespace esphome::binary_sensor {
static const char *const TAG = "sensor.filter";
// Timeout IDs for filter classes.
// Each filter is its own Component instance, so the scheduler scopes
// IDs by component pointer — no risk of collisions between instances.
constexpr uint32_t FILTER_TIMEOUT_ID = 0;
// AutorepeatFilter needs two distinct IDs (both timeouts on the same component)
constexpr uint32_t AUTOREPEAT_TIMING_ID = 0;
constexpr uint32_t AUTOREPEAT_ON_OFF_ID = 1;
void Filter::output(bool value) {
if (this->next_ == nullptr) {
this->parent_->send_state_internal(value);
@@ -23,16 +31,16 @@ void Filter::input(bool value) {
}
void TimeoutFilter::input(bool value) {
this->set_timeout("timeout", this->timeout_delay_.value(), [this]() { this->parent_->invalidate_state(); });
this->set_timeout(FILTER_TIMEOUT_ID, this->timeout_delay_.value(), [this]() { this->parent_->invalidate_state(); });
// we do not de-dup here otherwise changes from invalid to valid state will not be output
this->output(value);
}
optional<bool> DelayedOnOffFilter::new_value(bool value) {
if (value) {
this->set_timeout("ON_OFF", this->on_delay_.value(), [this]() { this->output(true); });
this->set_timeout(FILTER_TIMEOUT_ID, this->on_delay_.value(), [this]() { this->output(true); });
} else {
this->set_timeout("ON_OFF", this->off_delay_.value(), [this]() { this->output(false); });
this->set_timeout(FILTER_TIMEOUT_ID, this->off_delay_.value(), [this]() { this->output(false); });
}
return {};
}
@@ -41,10 +49,10 @@ float DelayedOnOffFilter::get_setup_priority() const { return setup_priority::HA
optional<bool> DelayedOnFilter::new_value(bool value) {
if (value) {
this->set_timeout("ON", this->delay_.value(), [this]() { this->output(true); });
this->set_timeout(FILTER_TIMEOUT_ID, this->delay_.value(), [this]() { this->output(true); });
return {};
} else {
this->cancel_timeout("ON");
this->cancel_timeout(FILTER_TIMEOUT_ID);
return false;
}
}
@@ -53,10 +61,10 @@ float DelayedOnFilter::get_setup_priority() const { return setup_priority::HARDW
optional<bool> DelayedOffFilter::new_value(bool value) {
if (!value) {
this->set_timeout("OFF", this->delay_.value(), [this]() { this->output(false); });
this->set_timeout(FILTER_TIMEOUT_ID, this->delay_.value(), [this]() { this->output(false); });
return {};
} else {
this->cancel_timeout("OFF");
this->cancel_timeout(FILTER_TIMEOUT_ID);
return true;
}
}
@@ -76,8 +84,8 @@ optional<bool> AutorepeatFilter::new_value(bool value) {
this->next_timing_();
return true;
} else {
this->cancel_timeout("TIMING");
this->cancel_timeout("ON_OFF");
this->cancel_timeout(AUTOREPEAT_TIMING_ID);
this->cancel_timeout(AUTOREPEAT_ON_OFF_ID);
this->active_timing_ = 0;
return false;
}
@@ -89,7 +97,8 @@ void AutorepeatFilter::next_timing_() {
// 2nd time: starts waiting the second delay and starts toggling with the first time_off / _on
// last time: no delay to start but have to bump the index to reflect the last
if (this->active_timing_ < this->timings_.size())
this->set_timeout("TIMING", this->timings_[this->active_timing_].delay, [this]() { this->next_timing_(); });
this->set_timeout(AUTOREPEAT_TIMING_ID, this->timings_[this->active_timing_].delay,
[this]() { this->next_timing_(); });
if (this->active_timing_ <= this->timings_.size()) {
this->active_timing_++;
@@ -104,7 +113,8 @@ void AutorepeatFilter::next_timing_() {
void AutorepeatFilter::next_value_(bool val) {
const AutorepeatFilterTiming &timing = this->timings_[this->active_timing_ - 2];
this->output(val); // This is at least the second one so not initial
this->set_timeout("ON_OFF", val ? timing.time_on : timing.time_off, [this, val]() { this->next_value_(!val); });
this->set_timeout(AUTOREPEAT_ON_OFF_ID, val ? timing.time_on : timing.time_off,
[this, val]() { this->next_value_(!val); });
}
float AutorepeatFilter::get_setup_priority() const { return setup_priority::HARDWARE; }
@@ -115,7 +125,7 @@ optional<bool> LambdaFilter::new_value(bool value) { return this->f_(value); }
optional<bool> SettleFilter::new_value(bool value) {
if (!this->steady_) {
this->set_timeout("SETTLE", this->delay_.value(), [this, value]() {
this->set_timeout(FILTER_TIMEOUT_ID, this->delay_.value(), [this, value]() {
this->steady_ = true;
this->output(value);
});
@@ -123,7 +133,7 @@ optional<bool> SettleFilter::new_value(bool value) {
} else {
this->steady_ = false;
this->output(value);
this->set_timeout("SETTLE", this->delay_.value(), [this]() { this->steady_ = true; });
this->set_timeout(FILTER_TIMEOUT_ID, this->delay_.value(), [this]() { this->steady_ = true; });
return value;
}
}

View File

@@ -9,6 +9,11 @@ namespace esphome::sensor {
static const char *const TAG = "sensor.filter";
// Filter scheduler IDs.
// Each filter is its own Component instance, so the scheduler scopes
// IDs by component pointer — no risk of collisions between instances.
constexpr uint32_t FILTER_ID = 0;
// Filter
void Filter::input(float value) {
ESP_LOGVV(TAG, "Filter(%p)::input(%f)", this, value);
@@ -191,7 +196,7 @@ optional<float> ThrottleAverageFilter::new_value(float value) {
return {};
}
void ThrottleAverageFilter::setup() {
this->set_interval("throttle_average", this->time_period_, [this]() {
this->set_interval(FILTER_ID, this->time_period_, [this]() {
ESP_LOGVV(TAG, "ThrottleAverageFilter(%p)::interval(sum=%f, n=%i)", this, this->sum_, this->n_);
if (this->n_ == 0) {
if (this->have_nan_)
@@ -383,7 +388,7 @@ optional<float> TimeoutFilterConfigured::new_value(float value) {
// DebounceFilter
optional<float> DebounceFilter::new_value(float value) {
this->set_timeout("debounce", this->time_period_, [this, value]() { this->output(value); });
this->set_timeout(FILTER_ID, this->time_period_, [this, value]() { this->output(value); });
return {};
}
@@ -406,7 +411,7 @@ optional<float> HeartbeatFilter::new_value(float value) {
}
void HeartbeatFilter::setup() {
this->set_interval("heartbeat", this->time_period_, [this]() {
this->set_interval(FILTER_ID, this->time_period_, [this]() {
ESP_LOGVV(TAG, "HeartbeatFilter(%p)::interval(has_value=%s, last_input=%f)", this, YESNO(this->has_value_),
this->last_input_);
if (!this->has_value_)

View File

@@ -191,15 +191,16 @@ template<typename... Ts> class DelayAction : public Action<Ts...>, public Compon
// instead of std::bind to avoid bind overhead (~16 bytes heap + faster execution)
if constexpr (sizeof...(Ts) == 0) {
App.scheduler.set_timer_common_(
this, Scheduler::SchedulerItem::TIMEOUT, Scheduler::NameType::STATIC_STRING, "delay", 0, this->delay_.value(),
[this]() { this->play_next_(); },
this, Scheduler::SchedulerItem::TIMEOUT, Scheduler::NameType::NUMERIC_ID_INTERNAL, nullptr,
scheduler_internal_id::DELAY_ACTION.id, this->delay_.value(), [this]() { this->play_next_(); },
/* is_retry= */ false, /* skip_cancel= */ this->num_running_ > 1);
} else {
// For delays with arguments, use std::bind to preserve argument values
// Arguments must be copied because original references may be invalid after delay
auto f = std::bind(&DelayAction<Ts...>::play_next_, this, x...);
App.scheduler.set_timer_common_(this, Scheduler::SchedulerItem::TIMEOUT, Scheduler::NameType::STATIC_STRING,
"delay", 0, this->delay_.value(x...), std::move(f),
App.scheduler.set_timer_common_(this, Scheduler::SchedulerItem::TIMEOUT, Scheduler::NameType::NUMERIC_ID_INTERNAL,
nullptr, scheduler_internal_id::DELAY_ACTION.id, this->delay_.value(x...),
std::move(f),
/* is_retry= */ false, /* skip_cancel= */ this->num_running_ > 1);
}
}
@@ -208,7 +209,7 @@ template<typename... Ts> class DelayAction : public Action<Ts...>, public Compon
void play(const Ts &...x) override { /* ignore - see play_complex */
}
void stop() override { this->cancel_timeout("delay"); }
void stop() override { this->cancel_timeout(scheduler_internal_id::DELAY_ACTION); }
};
template<typename... Ts> class LambdaAction : public Action<Ts...> {

View File

@@ -195,12 +195,24 @@ void Component::set_timeout(uint32_t id, uint32_t timeout, std::function<void()>
bool Component::cancel_timeout(uint32_t id) { return App.scheduler.cancel_timeout(this, id); }
void Component::set_timeout(InternalSchedulerID id, uint32_t timeout, std::function<void()> &&f) { // NOLINT
App.scheduler.set_timeout(this, id, timeout, std::move(f));
}
bool Component::cancel_timeout(InternalSchedulerID id) { return App.scheduler.cancel_timeout(this, id); }
void Component::set_interval(uint32_t id, uint32_t interval, std::function<void()> &&f) { // NOLINT
App.scheduler.set_interval(this, id, interval, std::move(f));
}
bool Component::cancel_interval(uint32_t id) { return App.scheduler.cancel_interval(this, id); }
void Component::set_interval(InternalSchedulerID id, uint32_t interval, std::function<void()> &&f) { // NOLINT
App.scheduler.set_interval(this, id, interval, std::move(f));
}
bool Component::cancel_interval(InternalSchedulerID id) { return App.scheduler.cancel_interval(this, id); }
void Component::set_retry(uint32_t id, uint32_t initial_wait_time, uint8_t max_attempts,
std::function<RetryResult(uint8_t)> &&f, float backoff_increase_factor) { // NOLINT
App.scheduler.set_retry(this, id, initial_wait_time, max_attempts, std::move(f), backoff_increase_factor);
@@ -516,12 +528,12 @@ void PollingComponent::call_setup() {
void PollingComponent::start_poller() {
// Register interval.
this->set_interval("update", this->get_update_interval(), [this]() { this->update(); });
this->set_interval(scheduler_internal_id::POLLING_UPDATE, this->get_update_interval(), [this]() { this->update(); });
}
void PollingComponent::stop_poller() {
// Clear the interval to suspend component
this->cancel_interval("update");
this->cancel_interval(scheduler_internal_id::POLLING_UPDATE);
}
uint32_t PollingComponent::get_update_interval() const { return this->update_interval_; }

View File

@@ -49,6 +49,21 @@ extern const float LATE;
static const uint32_t SCHEDULER_DONT_RUN = 4294967295UL;
/// Type-safe wrapper for internal scheduler IDs used by core base classes.
/// Uses a separate NameType (NUMERIC_ID_INTERNAL) so IDs can never collide
/// with component-level NUMERIC_ID values, even if the uint32_t values overlap.
struct InternalSchedulerID {
uint32_t id;
};
/// Reserved scheduler IDs for core base classes.
/// These use InternalSchedulerID which routes through NUMERIC_ID_INTERNAL,
/// a separate matching namespace from the NUMERIC_ID used by components.
namespace scheduler_internal_id {
constexpr InternalSchedulerID POLLING_UPDATE{0}; // PollingComponent interval
constexpr InternalSchedulerID DELAY_ACTION{1}; // DelayAction timeout
} // namespace scheduler_internal_id
// Forward declaration
class PollingComponent;
@@ -334,6 +349,8 @@ class Component {
*/
void set_interval(uint32_t id, uint32_t interval, std::function<void()> &&f); // NOLINT
void set_interval(InternalSchedulerID id, uint32_t interval, std::function<void()> &&f); // NOLINT
void set_interval(uint32_t interval, std::function<void()> &&f); // NOLINT
/** Cancel an interval function.
@@ -346,6 +363,7 @@ class Component {
bool cancel_interval(const std::string &name); // NOLINT
bool cancel_interval(const char *name); // NOLINT
bool cancel_interval(uint32_t id); // NOLINT
bool cancel_interval(InternalSchedulerID id); // NOLINT
/** Set an retry function with a unique name. Empty name means no cancelling possible.
*
@@ -452,6 +470,8 @@ class Component {
*/
void set_timeout(uint32_t id, uint32_t timeout, std::function<void()> &&f); // NOLINT
void set_timeout(InternalSchedulerID id, uint32_t timeout, std::function<void()> &&f); // NOLINT
void set_timeout(uint32_t timeout, std::function<void()> &&f); // NOLINT
/** Cancel a timeout function.
@@ -464,6 +484,7 @@ class Component {
bool cancel_timeout(const std::string &name); // NOLINT
bool cancel_timeout(const char *name); // NOLINT
bool cancel_timeout(uint32_t id); // NOLINT
bool cancel_timeout(InternalSchedulerID id); // NOLINT
/** Defer a callback to the next loop() call.
*

View File

@@ -53,9 +53,12 @@ struct SchedulerNameLog {
} else if (name_type == NameType::HASHED_STRING) {
ESPHOME_snprintf_P(buffer, sizeof(buffer), ESPHOME_PSTR("hash:0x%08" PRIX32), hash_or_id);
return buffer;
} else { // NUMERIC_ID
} else if (name_type == NameType::NUMERIC_ID) {
ESPHOME_snprintf_P(buffer, sizeof(buffer), ESPHOME_PSTR("id:%" PRIu32), hash_or_id);
return buffer;
} else { // NUMERIC_ID_INTERNAL
ESPHOME_snprintf_P(buffer, sizeof(buffer), ESPHOME_PSTR("iid:%" PRIu32), hash_or_id);
return buffer;
}
}
};
@@ -137,6 +140,9 @@ void HOT Scheduler::set_timer_common_(Component *component, SchedulerItem::Type
case NameType::NUMERIC_ID:
item->set_numeric_id(hash_or_id);
break;
case NameType::NUMERIC_ID_INTERNAL:
item->set_internal_id(hash_or_id);
break;
}
item->type = type;
item->callback = std::move(func);
@@ -218,6 +224,11 @@ void HOT Scheduler::set_timeout(Component *component, uint32_t id, uint32_t time
this->set_timer_common_(component, SchedulerItem::TIMEOUT, NameType::NUMERIC_ID, nullptr, id, timeout,
std::move(func));
}
void HOT Scheduler::set_timeout(Component *component, InternalSchedulerID id, uint32_t timeout,
std::function<void()> func) {
this->set_timer_common_(component, SchedulerItem::TIMEOUT, NameType::NUMERIC_ID_INTERNAL, nullptr, id.id, timeout,
std::move(func));
}
bool HOT Scheduler::cancel_timeout(Component *component, const std::string &name) {
return this->cancel_item_(component, NameType::HASHED_STRING, nullptr, fnv1a_hash(name), SchedulerItem::TIMEOUT);
}
@@ -227,6 +238,9 @@ bool HOT Scheduler::cancel_timeout(Component *component, const char *name) {
bool HOT Scheduler::cancel_timeout(Component *component, uint32_t id) {
return this->cancel_item_(component, NameType::NUMERIC_ID, nullptr, id, SchedulerItem::TIMEOUT);
}
bool HOT Scheduler::cancel_timeout(Component *component, InternalSchedulerID id) {
return this->cancel_item_(component, NameType::NUMERIC_ID_INTERNAL, nullptr, id.id, SchedulerItem::TIMEOUT);
}
void HOT Scheduler::set_interval(Component *component, const std::string &name, uint32_t interval,
std::function<void()> func) {
this->set_timer_common_(component, SchedulerItem::INTERVAL, NameType::HASHED_STRING, nullptr, fnv1a_hash(name),
@@ -242,6 +256,11 @@ void HOT Scheduler::set_interval(Component *component, uint32_t id, uint32_t int
this->set_timer_common_(component, SchedulerItem::INTERVAL, NameType::NUMERIC_ID, nullptr, id, interval,
std::move(func));
}
void HOT Scheduler::set_interval(Component *component, InternalSchedulerID id, uint32_t interval,
std::function<void()> func) {
this->set_timer_common_(component, SchedulerItem::INTERVAL, NameType::NUMERIC_ID_INTERNAL, nullptr, id.id, interval,
std::move(func));
}
bool HOT Scheduler::cancel_interval(Component *component, const std::string &name) {
return this->cancel_item_(component, NameType::HASHED_STRING, nullptr, fnv1a_hash(name), SchedulerItem::INTERVAL);
}
@@ -251,6 +270,9 @@ bool HOT Scheduler::cancel_interval(Component *component, const char *name) {
bool HOT Scheduler::cancel_interval(Component *component, uint32_t id) {
return this->cancel_item_(component, NameType::NUMERIC_ID, nullptr, id, SchedulerItem::INTERVAL);
}
bool HOT Scheduler::cancel_interval(Component *component, InternalSchedulerID id) {
return this->cancel_item_(component, NameType::NUMERIC_ID_INTERNAL, nullptr, id.id, SchedulerItem::INTERVAL);
}
struct RetryArgs {
// Ordered to minimize padding on 32-bit systems

View File

@@ -46,11 +46,14 @@ class Scheduler {
void set_timeout(Component *component, const char *name, uint32_t timeout, std::function<void()> func);
/// Set a timeout with a numeric ID (zero heap allocation)
void set_timeout(Component *component, uint32_t id, uint32_t timeout, std::function<void()> func);
/// Set a timeout with an internal scheduler ID (separate namespace from component NUMERIC_ID)
void set_timeout(Component *component, InternalSchedulerID id, uint32_t timeout, std::function<void()> func);
ESPDEPRECATED("Use const char* or uint32_t overload instead. Removed in 2026.7.0", "2026.1.0")
bool cancel_timeout(Component *component, const std::string &name);
bool cancel_timeout(Component *component, const char *name);
bool cancel_timeout(Component *component, uint32_t id);
bool cancel_timeout(Component *component, InternalSchedulerID id);
ESPDEPRECATED("Use const char* or uint32_t overload instead. Removed in 2026.7.0", "2026.1.0")
void set_interval(Component *component, const std::string &name, uint32_t interval, std::function<void()> func);
@@ -66,11 +69,14 @@ class Scheduler {
void set_interval(Component *component, const char *name, uint32_t interval, std::function<void()> func);
/// Set an interval with a numeric ID (zero heap allocation)
void set_interval(Component *component, uint32_t id, uint32_t interval, std::function<void()> func);
/// Set an interval with an internal scheduler ID (separate namespace from component NUMERIC_ID)
void set_interval(Component *component, InternalSchedulerID id, uint32_t interval, std::function<void()> func);
ESPDEPRECATED("Use const char* or uint32_t overload instead. Removed in 2026.7.0", "2026.1.0")
bool cancel_interval(Component *component, const std::string &name);
bool cancel_interval(Component *component, const char *name);
bool cancel_interval(Component *component, uint32_t id);
bool cancel_interval(Component *component, InternalSchedulerID id);
ESPDEPRECATED("Use const char* or uint32_t overload instead. Removed in 2026.7.0", "2026.1.0")
void set_retry(Component *component, const std::string &name, uint32_t initial_wait_time, uint8_t max_attempts,
@@ -102,9 +108,10 @@ class Scheduler {
// Name storage type discriminator for SchedulerItem
// Used to distinguish between static strings, hashed strings, and numeric IDs
enum class NameType : uint8_t {
STATIC_STRING = 0, // const char* pointer to static/flash storage
HASHED_STRING = 1, // uint32_t FNV-1a hash of a runtime string
NUMERIC_ID = 2 // uint32_t numeric identifier
STATIC_STRING = 0, // const char* pointer to static/flash storage
HASHED_STRING = 1, // uint32_t FNV-1a hash of a runtime string
NUMERIC_ID = 2, // uint32_t numeric identifier (component-level)
NUMERIC_ID_INTERNAL = 3 // uint32_t numeric identifier (core/internal, separate namespace)
};
protected:
@@ -206,6 +213,12 @@ class Scheduler {
name_type_ = NameType::NUMERIC_ID;
}
// Helper to set an internal numeric ID (separate namespace from NUMERIC_ID)
void set_internal_id(uint32_t id) {
name_.hash_or_id = id;
name_type_ = NameType::NUMERIC_ID_INTERNAL;
}
static bool cmp(const std::unique_ptr<SchedulerItem> &a, const std::unique_ptr<SchedulerItem> &b);
// Note: We use 48 bits total (32 + 16), stored in a 64-bit value for API compatibility.